Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Redox Biol ; 63: 102752, 2023 07.
Article in English | MEDLINE | ID: covidwho-2324519

ABSTRACT

Viral infection-induced cell death has long been considered as a double-edged sword in the inhibition or exacerbation of viral infections. Patients with severe Coronavirus Disease 2019 (COVID-19) are characterized by multiple organ dysfunction syndrome and cytokine storm, which may result from SARS-CoV-2-induced cell death. Previous studies have observed enhanced ROS level and signs of ferroptosis in SARS-CoV-2 infected cells or specimens of patients with COVID-19, but the exact mechanism is not clear yet. Here, we find SARS-CoV-2 ORF3a sensitizes cells to ferroptosis via Keap1-NRF2 axis. SARS-CoV-2 ORF3a promotes the degradation of NRF2 through recruiting Keap1, thereby attenuating cellular resistance to oxidative stress and facilitated cells to ferroptotic cell death. Our study uncovers that SARS-CoV-2 ORF3a functions as a positive regulator of ferroptosis, which might explain SARS-CoV-2-induced damage in multiple organs in COVID-19 patients and imply the potential of ferroptosis inhibition in COVID-19 treatment.


Subject(s)
COVID-19 , Ferroptosis , Humans , SARS-CoV-2 , Kelch-Like ECH-Associated Protein 1 , NF-E2-Related Factor 2/genetics , COVID-19 Drug Treatment
2.
Front Immunol ; 14: 1163397, 2023.
Article in English | MEDLINE | ID: covidwho-2306532

ABSTRACT

Introdcution: Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are major causes of COVID-19 mortality. However, drug delivery to lung tissues is impeded by endothelial cell barriers, limiting the efficacy of existing treatments. A prompt and aggressive treatment strategy is therefore necessary. Methods: We assessed the ability of anti-CD31-ORI-NPs to penetrate endothelial cell barriers and specifically accumulate in lung tissues using an animal model. We also compared the efficacy of anti-CD31-ORI-NPs to that of free oridonin in ameliorating acute lung injury and evaluated the cytotoxicity of both treatments on endothelial cells. Results: Compared to free ORI, the amount of anti-CD31-ORI-NPs accumulated in lung tissues increase at least three times. Accordingly, anti-CD31-ORI-NPs improve the efficacy three times on suppressing IL-6 and TNF-a secretion, ROS production, eventually ameliorating acute lung injury in animal model. Importantly, anti-CD31-ORI-NPs significantly decrease the cytotoxicity at least two times than free oridonin on endothelial cells. Discussion: Our results from this study will not only offer a novel therapeutic strategy with high efficacy and low toxicity, but also provide the rational design of nanomaterials of a potential drug for acute lung injury therapy.


Subject(s)
Acute Lung Injury , COVID-19 , Animals , Endothelial Cells , Kelch-Like ECH-Associated Protein 1 , NF-E2-Related Factor 2 , Acute Lung Injury/drug therapy , Inflammation/drug therapy , Epithelial Cells
3.
Int J Mol Sci ; 24(1)2022 Dec 27.
Article in English | MEDLINE | ID: covidwho-2245397

ABSTRACT

In patients with severe pneumonia due to COVID-19, the deregulation of oxidative stress is present. Nuclear erythroid factor 2 (NRF2) is regulated by KEAP1, and NRF2 regulates the expression of genes such as NFE2L2-KEAP1, which are involved in cellular defense against oxidative stress. In this study, we analyzed the participation of the polymorphisms of NFE2L2 and KEAP1 genes in the mechanisms of damage in lung disease patients with SARS-CoV-2 infection. Patients with COVID-19 and a control group were included. Organ dysfunction was evaluated using SOFA. SARS-CoV-2 infection was confirmed and classified as moderate or severe by ventilatory status and by the Berlin criteria for acute respiratory distress syndrome. SNPs in the gene locus for NFE2L2, rs2364723C>G, and KEAP1, rs9676881A>G, and rs34197572C>T were determined by qPCR. We analyzed 110 individuals with SARS-CoV-2 infection: 51 with severe evolution and 59 with moderate evolution. We also analyzed 111 controls. Significant differences were found for rs2364723 allele G in severe cases vs. controls (p = 0.02); for the rs9676881 allele G in moderate cases vs. controls (p = 0.04); for the rs34197572 allele T in severe cases vs. controls (p = 0.001); and in severe vs. moderate cases (p = 0.004). Our results showed that NFE2L2 rs2364723C>G allele G had a protective effect against severe COVID-19, while KEAP1 rs9676881A>G allele G and rs34197572C>T minor allele T were associated with more aggressive stages of COVID-19.


Subject(s)
COVID-19 , Kelch-Like ECH-Associated Protein 1 , NF-E2-Related Factor 2 , Humans , COVID-19/genetics , Genetic Predisposition to Disease , Kelch-Like ECH-Associated Protein 1/genetics , Kelch-Like ECH-Associated Protein 1/metabolism , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , SARS-CoV-2
4.
Antioxidants (Basel) ; 11(8)2022 Aug 10.
Article in English | MEDLINE | ID: covidwho-1979097

ABSTRACT

Coronavirus disease 2019 (COVID-19) is an infectious disease with approximately 517 million confirmed cases, with the average number of cases revealing that patients recover immediately without hospitalization. However, several other cases found that patients still experience various symptoms after 3-12 weeks, which is known as a long COVID syndrome. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection can activate nuclear factor kappa beta (NF-κß) and unbind the nuclear factor erythroid 2-related factor 2 (Nrf2) with Kelch-like ECH-associated protein 1 (Keap1), causing inhibition of Nrf2, which has an important role in antioxidant response and redox homeostasis. Disrupting the Keap1-Nrf2 pathway enhances Nrf2 activity, and has been identified as a vital approach for the prevention of oxidative stress and inflammation. Hence, natural antioxidants from various sources have been identified as a promising strategy to prevent oxidative stress, which plays a role in reducing the long COVID-19 symptoms. Oxygen-rich natural antioxidant compounds provide an effective Nrf2 activation effect that interact with the conserved amino acid residues in the Keap1-binding pocket, such as Ser602, Ser363, Ser508, and Ser555. In this review, the benefits of various natural antioxidant compounds that can modulate the Nrf2 signaling pathway, which is critical in reducing and curing long COVID-19, are highlighted and discussed.

5.
ChemMedChem ; 17(5):e202200088, 2022.
Article in English | Wiley | ID: covidwho-1729113

ABSTRACT

The Front Cover illustrates the natural product andrographolide, which modulates the abundance of the transcription factor NRF2, a substrate of the E3 ligase KEAP1. Previous studies identified that this drug possessed anti-SARS-CoV-2 activity, but the mechanism of action remained unclear. The authors designed and synthesized novel andrographolide derivatives with a functional site to fine-tune physicochemical properties and for linker attachment. The team assayed this new set of compounds in a cell-based NRF2 reporter gene assay and determined their ability to decrease infectivity of virus-treated Vero-E6 cells. Data showed that NRF2 activation by compounds and inhibition of SARS-CoV-2 replication correlated well. The study opens new avenues to investigate natural products that target the KEAP1/NRF2 axis as anti-SARS-CoV-2 agents. More information can be found in the Research Article by Christian Steinebach et al. 

6.
Int J Mol Sci ; 22(16)2021 Aug 05.
Article in English | MEDLINE | ID: covidwho-1662662

ABSTRACT

Nuclear factor erythroid 2-related factor (Nrf2) is a transcriptional activator of the cell protection gene that binds to the antioxidant response element (ARE). Therefore, Nrf2 protects cells and tissues from oxidative stress. Normally, Kelch-like ECH-associated protein 1 (Keap1) inhibits the activation of Nrf2 by binding to Nrf2 and contributes to Nrf2 break down by ubiquitin proteasomes. In moderate oxidative stress, Keap1 is inhibited, allowing Nrf2 to be translocated to the nucleus, which acts as an antioxidant. However, under unusually severe oxidative stress, the Keap1-Nrf2 mechanism becomes disrupted and results in cell and tissue damage. Oxide-containing atmospheric environment generally contributes to the development of respiratory diseases, possibly leading to the failure of the Keap1-Nrf2 pathway. Until now, several studies have identified changes in Keap1-Nrf2 signaling in models of respiratory diseases, such as acute respiratory distress syndrome (ARDS)/acute lung injury (ALI), chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF), and asthma. These studies have confirmed that several Nrf2 activators can alleviate symptoms of respiratory diseases. Thus, this review describes how the expression of Keap1-Nrf2 functions in different respiratory diseases and explains the protective effects of reversing this expression.


Subject(s)
NF-E2-Related Factor 2/metabolism , Respiratory Tract Diseases/metabolism , Animals , Antioxidants/metabolism , Humans , Oxidative Stress/physiology , Signal Transduction/physiology
7.
ChemMedChem ; 17(5): e202100732, 2022 03 04.
Article in English | MEDLINE | ID: covidwho-1661603

ABSTRACT

Naturally occurring compounds represent a vast pool of pharmacologically active entities. One of such compounds is andrographolide, which is endowed with many beneficial properties, including the activity against severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2). To initiate a drug repurposing or hit optimization campaign, it is imperative to unravel the primary mechanism(s) of the antiviral action of andrographolide. Here, we showed by means of a reporter gene assay that andrographolide exerts its anti-SARS-CoV-2 effects by inhibiting the interaction between Kelch-like ECH-associated protein 1 (KEAP1) and nuclear factor erythroid 2-related factor 2 (NRF2) causing NRF2 upregulation. Moreover, we demonstrated that subtle structural modifications of andrographolide could lead to derivatives with stronger on-target activities and improved physicochemical properties. Our results indicate that further optimization of this structural class is warranted to develop novel COVID-19 therapies.


Subject(s)
Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Diterpenes/chemistry , SARS-CoV-2/drug effects , Animals , COVID-19/virology , Cell Line , Chlorocebus aethiops , Humans , Kelch-Like ECH-Associated Protein 1/metabolism , Molecular Docking Simulation , Molecular Structure , NF-E2-Related Factor 2/metabolism , SARS-CoV-2/physiology , Vero Cells , Virus Replication , COVID-19 Drug Treatment
8.
Inflammopharmacology ; 29(5): 1347-1355, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1557643

ABSTRACT

The natural pathway of antioxidant production is mediated through Kelch-like erythroid cell-derived protein with Cap and collar homology [ECH]-associated protein 1 (Keap1)-Nuclear factor erythroid 2-related factor 2 (Nrf2) system. Keap1 maintains a low level of Nrf2 by holding it in its protein complex. Also, Keap1 facilitates the degradation of Nrf2 by ubiquitination. In other words, Keap1 is a down-regulator of Nrf2. To boost the production of biological antioxidants, Keap1 has to be inhibited and Nrf2 has to be released. Liberated Nrf2 is in an unbound state, so it travels to the nucleus to stimulate the antioxidant response element (ARE) present on the antioxidant genes. AREs activate biosynthesis of biological antioxidants through genes responsible for the production of antioxidants. In some cases of coronavirus disease 2019 (COVID-19), there is an enormous release of cytokines. The antioxidant defense mechanism in the body helps in counteracting symptoms induced by the cytokine storm in COVID-19. So, boosting the production of antioxidants is highly desirable in such a condition. In this review article, we have compiled the role of Keap1-Nrf2 system in antioxidant production. We further propose its potential therapeutic use in managing cytokine storm in COVID-19.


Subject(s)
COVID-19/metabolism , COVID-19/therapy , Cytokine Release Syndrome/metabolism , Cytokine Release Syndrome/therapy , Kelch-Like ECH-Associated Protein 1/metabolism , NF-E2-Related Factor 2/metabolism , Animals , Antioxidants/metabolism , Antioxidants/pharmacology , Antioxidants/therapeutic use , Disease Management , Humans , Kelch-Like ECH-Associated Protein 1/antagonists & inhibitors , NF-E2-Related Factor 2/agonists , Oxidative Stress/drug effects , Oxidative Stress/physiology
9.
Life Sci ; 291: 120111, 2022 Feb 15.
Article in English | MEDLINE | ID: covidwho-1487890

ABSTRACT

The Nrf2 transcription factor governs the expression of hundreds genes involved in cell defense against oxidative stress, the hallmark of numerous diseases such as neurodegenerative, cardiovascular, some viral pathologies, diabetes and others. The main route for Nrf2 activity regulation is via interactions with the Keap1 protein. Under the normoxia the Keap1 binds the Nrf2 and targets it to the proteasomal degradation, while the Keap1 is regenerated. Upon oxidative stress the interactions between Nrf2 and Keap1 are interrupted and the Nrf2 activates the transcription of the protective genes. Currently, the Nrf2 system activation is considered as a powerful cytoprotective strategy for treatment of different pathologies, which pathogenesis relies on oxidative stress including viral diseases of pivotal importance such as COVID-19. The implementation of this strategy is accomplished mainly through the inactivation of the Keap1 "guardian" function. Two approaches are now developing: the Keap1 modification via electrophilic agents, which leads to the Nrf2 release, and direct interruption of the Nrf2:Keap1 protein-protein interactions (PPI). Because of theirs chemical structure, the Nrf2 electrophilic inducers could non-specifically interact with others cellular proteins leading to undesired effects. Whereas the non-electrophilic inhibitors of the Nrf2:Keap1 PPI could be more specific, thereby widening the therapeutic window.


Subject(s)
Antioxidant Response Elements/physiology , Kelch-Like ECH-Associated Protein 1/metabolism , Molecular Targeted Therapy/methods , NF-E2-Related Factor 2/metabolism , Oxidative Stress , Angiotensin-Converting Enzyme 2/metabolism , Animals , COVID-19/metabolism , Host-Pathogen Interactions/physiology , Humans , Ozone/therapeutic use , Protein Interaction Maps/drug effects , Signal Transduction , COVID-19 Drug Treatment
10.
Antioxidants (Basel) ; 9(12)2020 Dec 04.
Article in English | MEDLINE | ID: covidwho-968868

ABSTRACT

Nuclear factor erythroid 2-related factor 2 (Nrf2) is an essential transcription factor that maintains the cell's redox balance state and reduces inflammation in different adverse stresses. Under the oxidative stress, Nrf2 is separated from Kelch-like ECH-associated protein 1 (Keap1), which is a key sensor of oxidative stress, translocated to the nucleus, interacts with the antioxidant response element (ARE) in the target gene, and then activates the transcriptional pathway to ameliorate the cellular redox condition. Curcumin is a yellow polyphenolic curcuminoid from Curcuma longa (turmeric) that has revealed a broad spectrum of bioactivities, including antioxidant, anti-inflammatory, anti-tumor, and anti-viral activities. Curcumin significantly increases the nuclear expression levels and promotes the biological effects of Nrf2 via the interaction with Cys151 in Keap1, which makes it a marvelous therapeutic candidate against a broad range of oxidative stress-related diseases, including type 2 diabetes (T2D), neurodegenerative diseases (NDs), cardiovascular diseases (CVDs), cancers, viral infections, and more recently SARS-CoV-2. Currently, the multifactorial property of the diseases and lack of adequate medical treatment, especially in viral diseases, result in developing new strategies to finding potential drugs. Curcumin potentially opens up new views as possible Nrf2 activator. However, its low bioavailability that is due to low solubility and low stability in the physiological conditions is a significant challenge in the field of its efficient and effective utilization in medicinal purposes. In this review, we summarized recent studies on the potential effect of curcumin to activate Nrf2 as the design of potential drugs for a viral infection like SARS-Cov2 and acute and chronic inflammation diseases in order to improve the cells' protection.

11.
Antioxidants (Basel) ; 9(5)2020 May 06.
Article in English | MEDLINE | ID: covidwho-854062

ABSTRACT

(1) Background: The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) disease (COVID-19) in China at the end of 2019 has caused a large global outbreak. Systemic ozone therapy (OT) could be potentially useful in the clinical management of several complications secondary to SARS-CoV-2. The rationale and mechanism of action has already been proven clinically in other viral infections and has been shown in research studies to be highly effective at decreasing organ damage mediated by inflammation and oxidative stress. This review summarizes the OT studies that illustrate the possible cytoprotective mechanism of action of ozone and its physiological by-products in target organs affected by SARS-CoV-2. (2) Methods: This review encompasses a total of 74 peer-reviewed original articles. It is mainly focused on ozone as a modulator of the NF-κ B/Nrf2 pathways and IL-6/IL-1ß expression. (3) Results: In experimental models and the few existent clinical studies, homeostasis of the free radical and antioxidant balance by OT was associated with a modulation of NF-κ B/Nrf2 balance and IL-6 and IL-1ß expression. These molecular mechanisms support the cytoprotective effects of OT against tissue damage present in many inflammatory diseases, including viral infections. (4) Conclusions: The potential cytoprotective role of OT in the management of organ damage induced by COVID-19 merits further research. Controlled clinical trials are needed.

12.
Trends Pharmacol Sci ; 41(9): 598-610, 2020 09.
Article in English | MEDLINE | ID: covidwho-641750

ABSTRACT

Acute respiratory distress syndrome (ARDS) caused by SARS-CoV-2 is largely the result of a dysregulated host response, followed by damage to alveolar cells and lung fibrosis. Exacerbated proinflammatory cytokines release (cytokine storm) and loss of T lymphocytes (leukopenia) characterize the most aggressive presentation. We propose that a multifaceted anti-inflammatory strategy based on pharmacological activation of nuclear factor erythroid 2 p45-related factor 2 (NRF2) can be deployed against the virus. The strategy provides robust cytoprotection by restoring redox and protein homeostasis, promoting resolution of inflammation, and facilitating repair. NRF2 activators such as sulforaphane and bardoxolone methyl are already in clinical trials. The safety and efficacy information of these modulators in humans, together with their well-documented cytoprotective and anti-inflammatory effects in preclinical models, highlight the potential of this armamentarium for deployment to the battlefield against COVID-19.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Coronavirus Infections/drug therapy , NF-E2-Related Factor 2/metabolism , Pneumonia, Viral/drug therapy , COVID-19 , Cytoprotection , Granulocytes/drug effects , Granulocytes/virology , Homeostasis , Humans , Oxidation-Reduction , Pandemics
SELECTION OF CITATIONS
SEARCH DETAIL